Math 10A with Professor Stankova
Worksheet, Discussion \#7; Monday, 9/11/2017
GSI name: Roy Zhao

Chain Rule

Example

1. Find $\frac{d}{d x} f(g(x))$.

Solution: The chain rule tells us that this derivative is $f^{\prime}(g(x)) \cdot g^{\prime}(x)$.

Problems

2. Find $\left(\cos \left(x^{2}\right)\right)^{\prime}$.

Solution:

$$
\frac{d}{d x}\left(\cos \left(x^{2}\right)\right)=-\sin \left(x^{2}\right) \cdot \frac{d}{d x} x^{2}=-2 x \sin \left(x^{2}\right)
$$

3. Find the derivative of $(\tan x)^{2}$.

Solution:

$$
\frac{d}{d x}(\tan x)^{2}=2 \tan x \cdot \frac{d}{d x} \tan x=2 \tan x \sec ^{2} x .
$$

4. Find the derivative of $\frac{x}{1-\sin x}$.

Solution: This is actually an application of the quotient rule:

$$
\begin{gathered}
\frac{d}{d x} \frac{x}{1-\sin x}=\frac{(1-\sin x) \cdot \frac{d}{d x} x-x \frac{d}{d x}(1-\sin x)}{(1-\sin x)^{2}}=\frac{1-\sin x-x(-\cos x)}{(1-\sin x)^{2}} \\
=\frac{1-\sin x+x \cos x}{(1-\sin x)^{2}}
\end{gathered}
$$

5. Find the derivative of $\ln (\sin x)$.

Solution:

$$
\frac{d}{d x} \ln (\sin x)=\frac{1}{\sin x} \cdot \frac{d}{d x} \sin x=\frac{\cos x}{\sin x}
$$

6. Find the derivative of $\sec (x)$.

Solution:

$$
\frac{d}{d x} \sec (x)=\frac{d}{d x}(\cos x)^{-1}=-(\cos x)^{-2} \cdot \frac{d}{d x} \cos x=\frac{\sin x}{\cos ^{2} x}
$$

7. Find the derivative of $\sin (\cos x)$.

Solution:

$$
\frac{d}{d x} \sin (\cos x)=\cos (\cos x) \cdot \frac{d}{d x} \cos x=-\cos (\cos x) \sin x
$$

8. Find the derivative of $e^{\sin (2 x)}$.

Solution:

$$
\frac{d}{d x} e^{\sin (2 x)}=e^{\sin (2 x)} \cdot \frac{d}{d x} \sin (2 x)=e^{\sin (2 x)} \cdot \cos (2 x) \cdot \frac{d}{d x}(2 x)=2 \cos (2 x) e^{\sin (2 x)}
$$

9. Find the derivative of $\tan \left(e^{\sin x}\right)$.

Solution:

$$
\begin{gathered}
\frac{d}{d x} \tan \left(e^{\sin x}\right)=\sec ^{2}\left(e^{\sin x}\right) \cdot \frac{d}{d x} e^{\sin x}=\sec ^{2}\left(e^{\sin x}\right) \cdot e^{\sin x} \cdot \frac{d}{d x} \sin x \\
=\sec ^{2}\left(e^{\sin x}\right) \cdot e^{\sin x} \cdot \cos x
\end{gathered}
$$

10. Find the derivative of $\cos (\tan (3 x))$.

Solution:

$$
\begin{gathered}
\frac{d}{d x} \cos (\tan (3 x))=-\sin (\tan (3 x)) \cdot \frac{d}{d x} \tan (3 x)=-\sin (\tan (3 x)) \cdot \sec ^{2}(3 x) \cdot \frac{d}{d x} 3 x \\
=-3 \sin (\tan (3 x)) \cdot \sec ^{2}(3 x)
\end{gathered}
$$

11. Find the derivative of $\left((2 x+3)^{5}+e^{x}\right)^{99}$.

Solution:

$$
\begin{gathered}
\frac{d}{d x}\left((2 x+3)^{5}+e^{x}\right)^{99}=99\left((2 x+3)^{5}+e^{x}\right)^{98} \cdot \frac{d}{d x}\left((2 x+3)^{5}+e^{x}\right) \\
=99\left((2 x+3)^{5}+e^{x}\right)^{98} \cdot\left(\frac{d}{d x}(2 x+3)^{5}+\frac{d}{d x} e^{x}\right) \\
=99\left((2 x+3)^{5}+e^{x}\right)^{98} \cdot\left[5(2 x+3)^{4} \cdot 2+e^{x}\right] . \\
=99\left((2 x+3)^{5}+e^{x}\right)^{98} \cdot\left[10(2 x+3)^{4}+e^{x}\right] .
\end{gathered}
$$

12. Find the derivative of $\arctan (\cos x)$.

Solution:

$$
\frac{d}{d x} \arctan (\cos x)=\frac{1}{1+\cos ^{2} x} \cdot \frac{d}{d x} \cos x=\frac{-\sin x}{1+\cos ^{2} x}
$$

13. Find the derivative of $\tan (\arctan (x))$.

Solution: Note that $\tan (\arctan (x))=x$ since \tan, \arctan are inverses and so the derivative is just 1. Using the chain rule though, this is

$$
\frac{d}{d x} \tan (\arctan (x))=\sec ^{2}(\arctan (x)) \cdot \frac{d}{d x} \arctan (x)=\frac{\sec ^{2}(\arctan (x))}{1+x^{2}} .
$$

Note that $\sec ^{2}(x)=\frac{1}{\cos ^{2}(x)}=\frac{\cos ^{2}(x)+\sin ^{2}(x)}{\cos ^{2}(x)}=1+\tan ^{2}(x)$ and hence

$$
\frac{\sec ^{2}(\arctan (x))}{1+x^{2}}=\frac{1+\tan ^{2}(\arctan (x))}{1+x^{2}}=\frac{1+x^{2}}{1+x^{2}}=1
$$

Derivative of Inverse Functions

Example

14. Find the derivative of $f^{-1}(x)$.

Solution: Since we know that $f\left(f^{-1}(x)\right)=x$, taking the derivative of both sides and using the chain rule gives us

$$
f^{\prime}\left(f^{-1}(x)\right) \cdot \frac{d f^{-1}}{d x}(x)=1 \Longrightarrow \frac{d f^{-1}}{d x}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)} .
$$

Problems

15. Let $f(x)=x^{3}+7 x+2$. Find the tangent line to $f^{-1}(x)$ at $(10,1)$.

Solution: In order to find the tangent, we need to know $\frac{d}{d x} f^{-1}(10)$ and we can find this using the formula:

$$
\frac{d f^{-1}}{d x}(10)=\frac{1}{f^{\prime}\left(f^{-1}(10)\right)}=\frac{1}{f^{\prime}(1)}=\frac{1}{10} .
$$

Now we plug that into the point slope formula to get the line

$$
y-y_{0}=m\left(x-x_{0}\right) \Longrightarrow y-1=\frac{x-10}{10} \Longrightarrow y=\frac{x}{10} .
$$

16. Let $f(x)=x^{5}+3 x^{3}+7 x+2$. Find the tangent line to $f^{-1}(x)$ at $(13,1)$.

Solution: In order to find the tangent, we need to know $\frac{d}{d x} f^{-1}(13)$ and we can find this using the formula:

$$
\frac{d f^{-1}}{d x}(13)=\frac{1}{f^{\prime}\left(f^{-1}(13)\right)}=\frac{1}{f^{\prime}(1)}=\frac{1}{21} .
$$

Now we plug that into the point slope formula to get the line

$$
y-y_{0}=m\left(x-x_{0}\right) \Longrightarrow y-1=\frac{x-13}{21} \Longrightarrow y=\frac{x+8}{21} .
$$

17. Let $f(x)=e^{-2 x}-9 x^{3}+4$. Find the tangent line to $f^{-1}(x)$ at $(5,0)$.

Solution: In order to find the tangent, we need to know $\frac{d}{d x} f^{-1}(5)$ and we can find this using the formula:

$$
\frac{d f^{-1}}{d x}(5)=\frac{1}{f^{\prime}\left(f^{-1}(5)\right)}=\frac{1}{f^{\prime}(0)}=\frac{-1}{2} .
$$

Now we plug that into the point slope formula to get the line

$$
y-y_{0}=m\left(x-x_{0}\right) \Longrightarrow y-0=\frac{x-5}{-22} \Longrightarrow y=\frac{-x+5}{2} .
$$

18. Let $f(x)=x^{7}+2 x+9$. Find the tangent line to $f^{-1}(x)$ at $(12,1)$.

Solution: In order to find the tangent, we need to know $\frac{d}{d x} f^{-1}(12)$ and we can find this using the formula:

$$
\frac{d f^{-1}}{d x}(12)=\frac{1}{f^{\prime}\left(f^{-1}(12)\right)}=\frac{1}{f^{\prime}(1)}=\frac{1}{9} .
$$

Now we plug that into the point slope formula to get the line

$$
y-y_{0}=m\left(x-x_{0}\right) \Longrightarrow y-1=\frac{x-12}{9} \Longrightarrow y=\frac{x}{9}-\frac{1}{3} .
$$

19. Let $f(x)=x^{5 / 3} e^{x^{2}}$. Find the tangent line to $f^{-1}(x)$ at $(e, 1)$.

Solution: In order to find the tangent, we need to know $\frac{d}{d x} f^{-1}(e)$ and we can find this using the formula:

$$
\frac{d f^{-1}}{d x}(e)=\frac{1}{f^{\prime}\left(f^{-1}(e)\right)}=\frac{1}{f^{\prime}(1)}=\frac{3}{11 e} .
$$

We found this by using the product rule to find the derivative of f since

$$
f^{\prime}(x)=\frac{5}{3} x^{2 / 3} e^{x^{2}}+x^{5 / 3} \cdot e^{x^{2}} \cdot 2 x
$$

Now we plug that into the point slope formula to get the line

$$
y-y_{0}=m\left(x-x_{0}\right) \Longrightarrow y-1=\frac{3(x-e)}{11 e} \Longrightarrow y=\frac{3 x}{11 e}+\frac{8}{11} .
$$

20. Let $f(x)=\frac{-e^{-3 x}}{x^{2}+1}$. Find the tangent line to $f^{-1}(x)$ at $(-1,0)$.

Solution: In order to find the tangent, we need to know $\frac{d}{d x} f^{-1}(-1)$ and we can find this using the formula:

$$
\frac{d f^{-1}}{d x}(-1)=\frac{1}{f^{\prime}\left(f^{-1}(-1)\right)}=\frac{1}{f^{\prime}(0)}=\frac{1}{3} .
$$

We found this by using the quotient rule to find the derivative of f since

$$
f^{\prime}(x)=\frac{\left(x^{2}+1\right) \cdot\left(-e^{-3 x}\right) \cdot(-3)-\left(-e^{-3 x}\right) \cdot(2 x)}{\left(1+x^{2}\right)^{2}} .
$$

Now we plug that into the point slope formula to get the line

$$
y-y_{0}=m\left(x-x_{0}\right) \Longrightarrow y-0=\frac{x-(-1)}{3} \Longrightarrow y=\frac{x+1}{3} .
$$

21. Let $f(x)=7 x+\sin (2 x)$. Find the tangent line to $f^{-1}(x)$ at $(0,0)$.

Solution: In order to find the tangent, we need to know $\frac{d}{d x} f^{-1}(0)$ and we can find this using the formula:

$$
\frac{d f^{-1}}{d x}(0)=\frac{1}{f^{\prime}\left(f^{-1}(0)\right)}=\frac{1}{f^{\prime}(0)}=\frac{1}{9} .
$$

Now we plug that into the point slope formula to get the line

$$
y-y_{0}=m\left(x-x_{0}\right) \Longrightarrow y-1=\frac{x-0}{9} \Longrightarrow y=\frac{x}{9} .
$$

22. Let $f(x)=x^{3}+8 x+\cos (3 x)$. Find the tangent line to $f^{-1}(x)$ at $(1,0)$.

Solution: In order to find the tangent, we need to know $\frac{d}{d x} f^{-1}(1)$ and we can find this using the formula:

$$
\frac{d f^{-1}}{d x}(1)=\frac{1}{f^{\prime}\left(f^{-1}(1)\right)}=\frac{1}{f^{\prime}(0)}=\frac{1}{8} .
$$

Now we plug that into the point slope formula to get the line

$$
y-y_{0}=m\left(x-x_{0}\right) \Longrightarrow y-0=\frac{x-1}{8} \Longrightarrow y=\frac{x-1}{8} .
$$

23. Let $f(x)=10 x+(\arctan (x))^{2}$. Find the tangent line to $f^{-1}(x)$ at $(0,0)$.

Solution: In order to find the tangent, we need to know $\frac{d}{d x} f^{-1}(0)$ and we can find this using the formula:

$$
\frac{d f^{-1}}{d x}(0)=\frac{1}{f^{\prime}\left(f^{-1}(0)\right)}=\frac{1}{f^{\prime}(0)}=\frac{1}{10} .
$$

Now we plug that into the point slope formula to get the line

$$
y-y_{0}=m\left(x-x_{0}\right) \Longrightarrow y-0=\frac{x-0}{10} \Longrightarrow y=\frac{x}{10} .
$$

24. Let $f(x)=7 x^{3}+(\ln x)^{3}$. Find the tangent line to $f^{-1}(x)$ at $(7,1)$.

Solution: In order to find the tangent, we need to know $\frac{d}{d x} f^{-1}(7)$ and we can find this using the formula:

$$
\frac{d f^{-1}}{d x}(7)=\frac{1}{f^{\prime}\left(f^{-1}(7)\right)}=\frac{1}{f^{\prime}(1)}=\frac{1}{21} .
$$

Now we plug that into the point slope formula to get the line

$$
y-y_{0}=m\left(x-x_{0}\right) \Longrightarrow y-1=\frac{x-7}{21} \Longrightarrow y=\frac{x}{21}+\frac{2}{3} .
$$

25. Let $f(x)=x^{3}+x-2$. Find the tangent line to $f^{-1}(x)$ at $(0,1)$.

Solution: In order to find the tangent, we need to know $\frac{d}{d x} f^{-1}(0)$ and we can find this using the formula:

$$
\frac{d f^{-1}}{d x}(0)=\frac{1}{f^{\prime}\left(f^{-1}(0)\right)}=\frac{1}{f^{\prime}(1)}=\frac{1}{4} .
$$

Now we plug that into the point slope formula to get the line

$$
y-y_{0}=m\left(x-x_{0}\right) \Longrightarrow y-1=\frac{x-0}{4} \Longrightarrow y=\frac{x}{4}+1 .
$$

26. Let $f(x)=x^{3}+2 x-8$. Find the tangent line to $f^{-1}(x)$ at $(4,2)$.

Solution: In order to find the tangent, we need to know $\frac{d}{d x} f^{-1}(4)$ and we can find this using the formula:

$$
\frac{d f^{-1}}{d x}(4)=\frac{1}{f^{\prime}\left(f^{-1}(4)\right)}=\frac{1}{f^{\prime}(2)}=\frac{1}{14} .
$$

Now we plug that into the point slope formula to get the line

$$
y-y_{0}=m\left(x-x_{0}\right) \Longrightarrow y-2=\frac{x-4}{14} \Longrightarrow y=\frac{x}{14}+\frac{12}{7} .
$$

